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Prediction of radial gas profiles in vertical pipe flow on the
basis of bubble size distribution
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Abstract—A method for the prediction of the radial gas profile for a given bubble size distribution is presented. It is based on the
assumption of the equilibrium of the forces acting on a bubble perpendicularly to the flow direction. These forces strongly depend
on the bubble size [14, 18]. For the simulation of transient flow regime effects, the modelling of several bubble classes in a 1D model
and consideration of their radial profiles seems to be more promising than a detailed 3D modelling. The radial profile of the liquid
velocity is calculated by the model of Sato [21, 22]. On the basis of this velocity profile, radial distributions are calculated separately
for all bubble classes according to the given bubble size distribution. The sum of these distributions is the radial profile of the gas
fraction. It is used in an iteration process to calculate a new velocity profile. There is a strong interaction between the profiles of
liquid velocity and gas volume fraction. The model is the basis of a fast running one-dimensional steady state computer code. The
results are compared with experimental data obtained for a number of gas and liquid volume flow rates. There is a good agreement
between experimental and calculated data. In particular, the change from wall peaking to centre peaking gas fraction distribution is
well predicted.  2001 Éditions scientifiques et médicales Elsevier SAS

two-phase flow / flow pattern / vertical pipe flow / bubble size distribution

Nomenclature

D diameter of the pipe . . . . . . . . . . . . m
Eo Eötvös number
Eod modified Eötvös number

F force per unit volume . . . . . . . . . . . . N·m−3

M Morton number
R radius of the pipe . . . . . . . . . . . . . . m
Re Reynolds number

V volume . . . . . . . . . . . . . . . . . . . m3

d diameter . . . . . . . . . . . . . . . . . . . m
g constant of gravity acceleration . . . . . . 9.81 m·s−2

j superficial velocity . . . . . . . . . . . . . m·s−1

k turbulent kinetic energy . . . . . . . . . . m2·s−2

n bubble density . . . . . . . . . . . . . . . m−3

r radius . . . . . . . . . . . . . . . . . . . . m
t time . . . . . . . . . . . . . . . . . . . . . s
w velocity . . . . . . . . . . . . . . . . . . . m·s−1

y distance from the wall . . . . . . . . . . . m

* Correspondence and reprints.
E-mail addresses: lucas@fz-rossendorf.de (D. Lucas), krepper@fz-

rossendorf.de (E. Krepper), prasser@fz-rossendorf.de (H.-M. Prasser).

Greek symbols

α gas volume fraction

ε energy dissipation rate per unit mass . . . m2·s−3

µ viscosity . . . . . . . . . . . . . . . . . . . N·s·m−2

ρ density . . . . . . . . . . . . . . . . . . . kg·m−3

σ surface tension . . . . . . . . . . . . . . . N·m−1

τ shear stress . . . . . . . . . . . . . . . . . N·m−2

Indices

D refers to the dispersion force
D,Eo refers to the Eötvös-number-dependent

dispersion force
H horizontal
L refers to the lift force
T refers to the net transverse lift force
W refers to the wall force
bubb property of a bubble
g gas phase
i number of the bubble class
l liquid phase
rel relative
t turbulent
w wall
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1. INTRODUCTION

The knowledge of the flow pattern is essential for one-
dimensional models of two-phase pipe flows. Such mod-
els are frequently used for practical applications in the
field of design, optimisation and safety analysis of chem-
ical and nuclear plants. Most of the correlations used by
these codes, e.g., for pressure drop or heat and mass trans-
fer, are valid only for a given flow regime. For the predic-
tion of the flow regime, empirical and theoretical flow
pattern maps have been developed (see, e.g., [1]). In gen-
eral, the flow pattern may change along the flow path as
well as with time. However, only steady state flow maps
for fully developed flow conditions are state of the art.
They are not able to predict the transient restructuring of
the flow pattern. Recently attempts were made to solve
this problem by the introduction of additional equations
for the bubble density or corresponding parameters like
bubble diameter, bubble volume or interfacial area (see,
e.g., [2]). Such models have to consider bubble coales-
cence and bubble break-up.

In literature several models are available for bub-
ble coalescence and break-up [3–5]. The rates for both
processes depend on the bubble density. If an equation
for the particle density or any equivalent parameter is in-
cluded in one-dimensional models this parameter is for-
mally available, but averaged over an area perpendicular
to the flow path.

Many investigations were done concerning the radial
gas profiles in vertical pipe flow [6–9]. In some cases
wall peaking was observed in other cases a peak in the
pipe centre was found. The gas profiles are the result
of the nondrag forces, acting perpendicularly to the flow
direction, which are caused by the liquid shear flow in
the tube. Zun derived a lift force, to which a spherical
obstacle in a shear flow is subjected [10]. According
to the liquid velocity profile, found in a vertical tube
upwards flow, this lift force acts into wall direction. Antal
et al. [11] proposed to consider in addition a lubrication
force, which acts to drive the bubbles away from the
wall. Tomiyama et al. [12, 13] proposed an extended
definition of the lift force, changing its sign depending on
the bubble diameter. In case of a water–air system under
atmospheric pressure this change was found at a bubble
diameter of about 5.8 mm. Bubbles with a diameter
below 5.8 mm should be found preferably near the wall
and larger bubbles in the pipe centre.

This fact is very important for the modelling of the
spatial evolution of developing two-phase bubble flow
in a vertical pipe including the prediction of a change
of the flow pattern. Bubble coalescence and break-up

must be understood as local events. Their rates depend
on the local quantities of the bubble number densities and
bubble sizes. For this reason the total rates over the pipe
cross section are controlled by the radial distributions of
the bubbles depending on their size. To give an example,
the coalescence rate for 3 mm bubbles with 8 mm bubbles
should be much smaller in case of consideration of the
radial distributions compared to a model that uses particle
densities averaged over the pipe cross section. The 3 mm
bubbles are located preferably in the wall region and
the 8 mm bubbles near to the pipe centre. This means,
collisions between a 3 mm bubble and an 8 mm bubble
are less likely than predicted considering uniform radial
distributions.

The collision between a bubble and an eddy is as-
sumed to be the reason for bubble fragmentation (see,
e.g., [5]). Because of the larger shear stress, the collision
frequency between a bubble and an eddy in the wall re-
gion is larger than in the centre. That means for a bubble
with a given diameter the break-up rate is larger in wall
region. A bubble with a diameter larger than 5.8 mm, gen-
erated in wall region by coalescence of two smaller bub-
bles, migrates to the pipe centre. If it is stable enough to
do this migration without break-up, it has a good chance
to survive also in the pipe centre. For this reason the ap-
pearance of relatively stable bubbles larger than 5.8 mm
(air–water system) is a necessary condition for the change
from bubble to slug flow.

That means:

(1) The consideration of the bubble size distribution
is essential for the prediction of the change of the flow
pattern.

(2) The radial gas fraction distribution must be re-
solved into the contributions of bubbles according to their
size for calculating rates for coalescence and break-up.

Many attempts were done to use two- or three-dimen-
sional CFD codes to predict radial distributions of the
gas fraction [8, 14, 15]. Because of the high computa-
tional effort there are limits in considering several bubble
classes in multi-dimensional calculations. The ideas dis-
cussed above suggest that for a first step the consideration
of the bubble size distribution should be more important
for evolution of the flow than a transient modelling of
three-dimensional velocity fields.

A one-dimensional model was developed, which re-
solves the parameters in radial direction. It allows the pre-
diction of the radial bubble distributions in a vertical pipe
flow from a given bubble size distribution. Experimen-
tally determined bubble size distributions were used as
input of the model. They were measured for several com-
binations of gas and liquid volume flow rates. The model
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is based on the assumption of equilibrium of the forces
acting on a bubble perpendicularly to the main flow direc-
tion, what corresponds to fully established profiles. This
quasi-stationary approach leads to low computational ef-
forts. By this model the dependence of radial distribu-
tions on the bubble diameter can be checked using a large
number of bubble classes.

2. THE MODEL

2.1. Balance of the forces acting
perpendicularly to the flow
direction

In vertical pipe flow, forces acting perpendicularly
to the flow direction (nondrag forces) determine the
establishment of radial gas profiles or, in other words,
radial distributions of the bubbles. The forces taken into
account are: the transverse lift force, the lubrication
or wall force and dispersion forces. The model does
not consider single bubbles, but the radial distributions
of volume fractions. For a mono-dispersed flow with
bubbles with a volumeVbubb the volume fraction can be
defined as

α = Vbubbnbubb (1)

wherenbubb is the number of bubbles per unit volume.

According to [16, 17] the forces acting on a bubble are
determined by the Reynolds number, Eötvös number and
Morton number:

Re = ρlwreldbubb

µl
(2)

Eo = g(ρl − ρg)d
2
bubb

σ
(3)

M = gµ4
l (ρl − ρg)

ρlσ 3 (4)

The classicallift force was introduced about 20 years
ago to model the observed wall peaking [10]. This force
is shear induced. Related to the unit volume it can be
calculated as

F L = −CLρl(wg − wl)× rot(wl) (5)

with a positive lift force coefficientCL . A positive sign
means that the lift force acts towards decreasing liquid
velocity, i.e. for the upwards flow in a vertical pipe to-
wards the pipe wall. Tomiyama et al. [12] proposed an-
other kind of transverse lift force, which is caused by the
interaction between the wake and the shear field. It acts in

the opposite direction, that means it is also calculated by
equation (5), but has a negative coefficientCL. Tomiyama
et al. [18] express both forces summarized as a net trans-
verse lift force with the experimentally determined coef-
ficientCT:

CT =




min
[
0.288 tanh(0.121Re), f (Eod)

]
for Eod < 4

f (Eod) for 4< Eod < 10
0.29 forEod > 10

(6)

with

f (Eod)= 0.00105Eo3
d−0.0159Eo2

d−0.0204Eod+0.474

This coefficient depends on the modified Eötvös number
given by

Eod = g(ρl − ρg)d
2
H

σ
(7)

Here dH is the maximum horizontal dimension of the
bubble. It is calculated using an empirical correlation for
the aspect ratio from [19] by the following equation:

dH = dbubb
3
√

1+ 0.163Eo0.757 (8)

For the water–air system at normal conditionsCT changes
its sign atdbubb= 5.8 mm.

The lubrication force, introduced by Antal et al. [11],
acts to drive bubbles away from the wall. Tomiyama et
al. [12] developed a modified equation for this force per
unit volume:

F W = −CW
dbubb

2

(
1

y2
− 1

(D − y)2

)
ρlw

2
relnr (9)

They determined the coefficientCW for a system with
logM = −2.8 as

CW =
{

exp(−0.933Eo + 0.179) for 1 ≤ Eo ≤ 5
0.007Eo + 0.04 for 5≤ Eo ≤ 33

(10)

As mentioned above, the presented model does not
consider individual bubbles, but continuous radial dis-
tributions. Theturbulent dispersion force considers the
smoothing of these radial gas profiles caused by the tur-
bulence. That means, this force is introduced to simulate
a phasic diffusion. Lahey et al. [20] derived an equation
for the force per unit volume as

F D = −0.1ρlkl gradα (11)

Following [14] there is a fluctuating motion of single
bubbles, which increases with the Eötvös number. It
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is caused by the deformation of the bubbles. These
fluctuations cause an additional smoothing of the profiles,
which is not covered by the dispersion force according to
equation (11). For this reason a second dispersion force
is introduced, which depends on the Eötvös number. As
reported in [14] the fluctuations were observed at bubbles
with Eötvös numbers larger than about 1. For this reason
we stated

F D,Eo = −CD,Eoρl(Eo − 1)gradα (12)

The parameterCD,Eo is the only new model parameter.
According to integral experimental data (see below)
CD,Eo = 0.0015 m2·s−2 is assumed forEo > 1. For
Eo< 1 CD,Eo is set to zero.

The radial balance of forces can be written as

αi(FL +FW)+ FD + FD,Eo = 0 (13)

where the scalar forces denote the components in radial
direction. Applying equations (5), (9), (11) and (12) the
resulting equation is

(
0.1kl +CD,Eo(Eo − 1)

)dα

dr
+

(
CTwrel

dwl

dr

+CW
dbubb

2

(
1

(R − r)2
− 1

(R + r)2

)
w2

rel

)
α = 0

(14)

This equation is a first-order differential equation with
respect toα(r). The coefficients depend onr. The
equation is valid only for a mono-dispersed bubble
distribution with a bubble diameterdbubb.

For real bubble distributions a subdivision into several
bubble classes is done. According to these bubble classes
the gas volume fractionα is subdivided into gas volume
fractionsαi with

α(r)=
∑
i

αi(r) (15)

αi is the total volume fraction of bubbles with a diameter,
which is within the bubble classi. Equation (14) has now
to be solved separately for each bubble classi with αi(r)
as a result. For given coefficients it is solved starting at
the centre of the pipe withαi(r = 0)= 1. The resulting
αi(r) is renormalized according to the volume fraction of
the bubble classi in the bubble size distribution.

The coefficients in equation (14) depend on the turbu-
lent kinetic energy of the liquidkl and the gradient of the
liquid velocity dwl/dr as a function of the radius. Their
calculation is presented in the next two chapters. They

depend onα(r), and so the system of equations is solved
by an iteration procedure. The dependence of the relative
velocity of the gas phase compared to the liquidwrel on
the radial position is neglected, but an average value for
each bubble class is calculated using the drag coefficient
given in [14].

2.2. Radial profile of the liquid velocity

The radial profile of the liquid velocity is calculated
for a given radial gas distribution using the model of
Sato et al. [21, 22]. They subdivided the eddy diffusivity
into two components. The first component considers the
inherent wall turbulence, which does not depend on the
bubble agitation, the second considers the turbulence
caused by the bubbles. This causes a feedback between
the radial gas profile and the radial profile of liquid
velocity. The complete model equations as well as a
scheme for a numerical solution procedure can be found
in [22]. The wall shear stressτw is calculated by an
iteration procedure until the averaged liquid velocity
equals to the given liquid volume flow rate.

Besides the radial gas profileα(r) the model of Sato
needs as an input the bubble diameter and the relative
velocity of the gaswrel. For the last two parameters
values averaged over all bubble classes are taken to keep
the model simple. In the result the radial profile of the
liquid velocity dwl/dr and the turbulent viscosityµt are
calculated as functions of the radius.

2.3. Radial profile of the liquid
turbulent kinetic energy

For the calculation of the turbulent kinetic energy
the equations of thek–ε model are used. A common
nonlinear differential equation of the second order for the
steady state turbulent kinetic energyk of the liquid can be
derived by using the following assumptions:

• The time-averaged liquid velocity has only a compo-
nent in axial direction.

• The time-averaged liquid velocity is only a function of
the radius and does not depend on the azimuthal position
and the height.

According to thek–ε model, the turbulent energyk
satisfies the following balance equation:

∂

∂t
ρlkl + div(ρlklwl)= div

(
µt

σk
grad(kl)

)
+ Pk − ρlε

(16)
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with the turbulence production termPk , which simplifies
with the assumptions mentioned above to

Pk = µt

(
dwl

dr

)2

(17)

Further, the relation

µt = Cµρl
k2

ε
(18)

is used.

For steady state conditions and considering only radial
dependences of all properties and the relations (17) and
(18) the equation (16) results in

µt

σk

d2kl

dr2 +
(

1

σk

dµt

dr
+ µt

σk

1

r

)
dkl

dr

− Cµρ
2
l

µt
k2

l +µt

(
dwl

dr

)2

= 0 (19)

This equation is transferred to a discrete difference
scheme and solved with the boundary conditions
kl(R)= 0 and dkl/dr = 0 for r = 0.

2.4. Iteration procedure

The radial gas fraction profiles are calculated by an
iterative procedure. The iteration starts from a uniform
distribution of the gas fraction. The radial profile of liquid
velocity and afterwards the radial profile of the liquid
turbulent energy are calculated for this gas profile. Then
equation (14) is solved for each bubble class.α(r) is
calculated according to equation (15). This is used for
a new calculation of radial profiles of liquid velocity and
turbulent kinetic energy. An under-relaxation is necessary
to guarantee the stability of the iteration.

There is a very sensitive feedback between the veloc-
ity profile and the gas fraction profile. In case of a flow
with bubble sizes below 5.8 mm the feedback smoothes
the radial gas profiles. The bubbles are located preferably
at the wall region. For this reason the liquid velocity near
the wall is increased. This smoothes the velocity profile
apart from the wall and reduces the lift force in the core
region of the flow, which acts towards the wall.

Otherwise, if a considerable fraction of bubbles with
a diameter larger than 5.8 mm occurs, there is a posi-
tive feedback between the gas and velocity profiles. The
bubbles in the centre accelerate the liquid. For this rea-
son the velocity gradient in the central region increases.
This again causes an increase of the lift force, which acts

towards the pipe centre. The turbulent component of the
dispersion force is not large enough to distribute the large
bubble over the cross section of the pipe. Instead they ac-
cumulate near the centreline, which is in contradiction to
the experimental observations. Obviously, another mech-
anism is dispersing the bubbles, which is not covered
by any of the models introduced up to now. The fluc-
tuating movement of the large bubbles, as observed by
Tomiyama [14], may be such a mechanism. Due to the
oscillatory trajectory, the bubbles are moved away from
the centreline. That is why the additional dispersion force
according to equation (12) was introduced. It describes
the fluctuating movement of large bubbles and prevents
their accumulation within a small region close to the cen-
treline. The parameterCD,Eo was tuned to achieve a good
agreement between calculated and measured radial pro-
files for large bubbles.

Besides the description of fluctuations in bubble mo-
tion, this additional dispersion force also solves two other
problems of the model. At first the balance of forces is
based on the assumption of an idealised bubble, where all
forces act at the centre of mass. In reality, the bubble is
exposed to an inhomogeneous liquid velocity profile and
the forces act on the bubble surface. The larger the bubble
diameter the more the velocity gradient over the bubble
differs from that at the centre of mass. This is especially
important if the bubble is located near the maximum of
the velocity profile. In this case the real lift force is hard
to determine, because the force calculated for the location
of the centre of mass differs significantly from the forces
acting at the bubble surface, which may even act in dif-
ferent directions. The second problem is that the velocity
profile is distorted by large single bubbles. For this reason
it can be assumed that the calculated lift force is not con-
sistent if the bubble diameter is larger than about half of
pipe diameter. These problems are partially compensated
by the Eötvös-number-dependent dispersion force.

Calculations with an assumed velocity profile accord-
ing to a 1/m law have shown that the feedback of the gas
fraction profile on the velocity profile is not negligible.
Even for an integral gas fraction of only 1–2 % the gas
fraction profiles calculated by the presented model differ
significantly from that obtained with a constant velocity
profile.

3. COMPARISON WITH EXPERIMENTAL
DATA

Experimental data obtained from measurements at
the two-phase flow test loop of the Institute of Safety
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Figure 1. Scheme of the wire mesh sensor with 16×16
electrode wires.

Research [23] were used for the validation of the model.
The measurements were carried out at a vertical test
section of 4 m height and 51.2 mm inner diameter. Water–
air flow under normal conditions was used. Air was
injected through a system of capillaries. The ends of these
capillaries are equally distributed over the cross section
of the pipe. During one experiment gas and liquid flow
rates were held at constant values, i.e. the properties of
the flow changed only with the distance along the pipe,
but were constant in time.

The test section was equipped with a wire mesh sen-
sor [24], shown infigure 1. The sensor consists of two
layers, each of 16 parallel wires with a distance of 3 mm.
The two layers are arranged with crossed wires. The dis-
tance between the layers amounts to 1.5 mm. By a multi-
plex electronic circuit the conductivity is measured sub-
sequently at each cross point. On the basis of the local
instantaneous conductivity of the two-phase mixture at
the crossing points of the wires of the two grids, the sen-
sor allows the determination of the gas fraction distribu-
tion over the area of the sensor with a frequency of 1 200
frames per second. The wire-mesh sensor delivers a se-
quence of two-dimensional distributions of the local in-
stantaneous gas fractionε(i, j, k), measured in each mesh
formed by two crossing electrodes. Herei is the num-
ber of the transmitter wire,j the receiver wire. The in-
dexk denominates the instantaneous current distribution
in time. In general, a bubble is extended over more than
one mesh. Due to the high time resolution it is mostly
mapped in several successive frames. By integrating the
local instantaneous gas fractions over the area belonging
to a bubble, its volume and, consequently, its effective

Figure 2. Flow map. The borderlines for the transition of
the flow regimes were taken from [1]. The points indicate
the performed tests. The marked points were used for the
validation of the model.

diameter can be assessed. This allows one to obtain bub-
ble size distributions [23, 25]. This requires the following
steps of data processing:

• Identification of bubbles, i.e. of areas containing gas
and surrounded by the liquid phase. Technically this is
done by assigning an identifying number to all elements
(i, j, k) of the measured gas fraction distributionε(i, j, k)
that fulfils the mentioned condition.

• Integrating the local instantaneous gas fraction over
the elements belonging to the given bubble to obtain the
bubble volume and transfer to an equivalent diameter.

• Calculation of a statistical distribution with the equiv-
alent bubble diameter as variable.

Two-dimensional gas fraction profiles can be obtained
by averaging the instantaneous two-dimensional distrib-
utions over a period of several seconds. Using the identi-
fying number that indicates to which bubble a given local
instantaneous gas fraction value belongs, profiles can be
calculated also considering only those bubbles, the diam-
eter of which lies in a given interval. This results in partial
gas fraction profiles for a distinct bubble size interval.

Measurements were performed for a large number
of combinations of liquid and gas volume flow rates at
7 different height positions. For the validation of the
presented model the upper position (L/D = 60) and the
combinations of volume flow rates marked infigure 2 by
the bars were used. Measured bubble size distributions
were used as an input of the model. The width of the
bubble classes was 0.25 mm.

The model well predicted wall or centre peaking of the
gas volume fraction for all the investigated data points.
As an example,figures 3–6 show the radial profiles for
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Figure 3. Measured bubble size distribution and radial gas
distribution (solid line: prediction, stars: experimental data),
jl =0.4048 m·s−1, jg =0.0096 m·s−1.

Figure 4. Measured bubble size distribution and radial gas
distribution (solid line: prediction, stars: experimental data),
jl =0.4048 m·s−1, jg =0.0235 m·s−1.

Figure 5. Measured bubble size distribution and radial gas
distribution (solid line: prediction, stars: experimental data),
jl =0.4048 m·s−1, jg =0.0574 m·s−1.

Figure 6. Measured bubble size distribution and radial gas
distribution (solid line: prediction, stars: experimental data),
jl =0.4048 m·s−1, jg =0.1402 m·s−1.
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Figure 7. Measured (stars) and predicted (solid line) radial
profiles of the gas fraction in dependence on the bubble
diameter.

the 4 bold marked points of the flowmap (seefigure 2).
The liquid superficial velocity equals to 0.4048 m·s−1

and the gas superficial velocity increases from 0.0096
to 0.1402 m·s−1. The experimental data are plotted for
each crossing point of the wires of the two grids (see
figure 1). For this reason, several data points are plotted
for one radial position. The scattering of them is caused
by some azimuthal non-uniformity. The radial profiles
are very well predicted by the model. Please note that the
coefficient for the Eötvös-number-dependent dispersion
force is the only tuned parameter of the model! All
other parameters were taken from literature without any
change.

Figure 7 shows a comparison of the radial profiles
of the gas fraction for distinct bubble size classes for
jl = 0.4048 m·s−1 and jg = 0.0574 m·s−1. There is
a very good agreement between calculated and measured
data. This confirms the results from [14] concerning the
bubble size or Eötvös number dependence of the lift force
and radial gas fraction profiles.

The largest deviations of measured and predicted
profiles were found in the transition region from wall

peaking to centre peaking (seefigure 2). In some cases
the profiles are overestimated in the centre region. This
may be explained by the limitation of the model to steady
state conditions. In reality in such cases there is a high
coalescence rate for bubbles below 5.8 mm in the near-
wall region. Due to the coalescence, bubbles larger than
5.8 mm are generated. However, the model assumes an
equilibrium of the radial forces, that means these bubbles
immediately move to the centre region. In reality they
need some time to move from the wall region to the
centre. Therefore, they are found still near the wall in the
experimental data. This also explains the overestimation
of the gas fraction in the pipe centre in the case of
6–8 mm bubbles shown infigure 7.

4. CONCLUSIONS

The presented model allows the prediction of ra-
dial gas profiles in vertical pipe flows. In particular,
the model allows a prediction whether wall peaking or
centre peaking occurs in dependence on the gas and
liquid volume flow rates and the bubble size distrib-
ution. The good agreement between experimental and
calculated data confirms the dependence of the radial
forces acting on a bubble on the bubble size as re-
ported by Tomiyama [14]. The correlations for these
forces as well as the model for the radial velocity pro-
file form were taken from literature without any change
of the empirical parameters. The only extension was
the introduction of Eötvös-number-dependent dispersion
force.

The dependence of radial forces on bubble size is very
important for the modelling of the transition between
bubble flow and slug flow. It is supposed that the attempts
for a one-dimensional modelling of bubble coalescence
and bubble break-up suffer from neglecting the radial
profiles of the particle densities for the single bubble
classes.

This assumption will be proved in a next step by
including correlations for bubble coalescence and break-
up into the presented model. Then only an initial bubble
size distribution has to be given and the change of this
distribution in time can be evaluated. That corresponds
to the change of a bubble size distribution along the flow
path, if the differences of the velocity of different bubble
classes are neglected. Another possibility is a connection
of this model with a one-way bubble tracking method as
suggested in [18].
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